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ABSTRACT

 

This paper presents a sample control design for the base isolated benchmark building with bilinear hys-

teretic bearings (

 

e.g.

 

, lead-rubber bearings). Since there is no well-defined control strategy for nonlinear

structures, and available linear strategies are well-known among the civil engineering community, a linear

quadratic Gaussian (LQG) controller is selected for this purpose. To utilize an LQG controller, a linearized

model of the nonlinear structure is required. A good linearized model, however, should be able to represent

the nonlinear structure responses when both are controlled. It is shown that design problems of an equiva-

lent linear model and an LQG controller are not, in fact, independent and require one for the other. In this

study, the LQG controller is designed based on some parametric studies, and an iterative method is pro-

posed for the development of an equivalent linear model. In the iterative method, the equivalent linear

model is formed by replacing the nonlinear isolation elements that have bilinear stiffness and zero damp-

ing in the benchmark structure with a linear stiffness and a linear damping. Here, the linear stiffness is

determined in the iterative method such that the RMS force of the bilinear isolation elements in the con-

trolled (nonlinear) benchmark structure is equivalent to that of the corresponding isolation elements in the

equivalent linear model. The overall approach is applied to the benchmark structure for seven historical

earthquake ground acceleration data, and an LQG controller and an equivalent linear model are obtained.

The numerical simulations show that the equivalent linear model successfully replicates the nonlinear

response, and the controller is able improve the overall performance. As the final designs are not intended

to be competitive, the method proposed can be improved in several ways to obtain better results. While the

equivalent linear model developed herein may be used as a starting point in studying this benchmark prob-

lem, because of the strong interaction between controller and equivalent linear model, the participants of

the base isolation benchmark problem are strongly encouraged to develop their own controller-specific

equivalent linear models.
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INTRODUCTION

 

Currently, base isolation is the most widely applied control strategy for seismic protection of structures

(Skinner 

 

et al

 

. 1993). The fundamental concept is to reduce the structural deformations by decoupling the

structure from excessive ground or support motions caused by the earthquakes. In isolated buildings, a

flexible layer with appropriate damping is constructed between the structure and the foundation. In

bridges, this layer is between the girder and the pier and behaves as a support. Current practice and

research has proven that a well-designed base isolation improves overall performance of a structure during

an earthquake compared to structures designed and constructed without any control technology.

As with any structural control strategy, base isolation has advantages and disadvantages over other con-

trol strategies, namely semiactive and active control. Compared to active control, base isolation does not

have robustness problems, requires no energy to function, and has low initial and maintenance/operation

costs. However, the invariant physical properties of the isolation limits its performance. On the other hand,

semiactive control combines the robustness characteristics of base isolation with improved performance

without using large amounts of energy. Several researchers have proposed using base isolation with active/

semiactive control technologies to improve the performance of base isolated structures (Kelly 

 

et al.

 

 1987;

Reinhorn 

 

et al.

 

 1987; Nagarajaiah 

 

et al.

 

 1993; Nagarajaiah 1994; Reinhorn and Riley 1994; Schmitendorf

 

et al.

 

 1994; Yoshida 

 

et al.

 

 1994; Taylor and Constantinou 1996; Yang 

 

et al.

 

 1996; Johnson 

 

et al.

 

 1999;

Symans and Kelly 1999; Yoshida 

 

et al.

 

 1999; Spencer 

 

et al.

 

 2000; Erkus 

 

et al

 

. 2002; Ramallo

 

 et al.

 

 2002).

These are known as hybrid control strategies and are becoming popular as they benefit from the merits of

different approaches.

The ASCE Technical Committee on Structural Control has developed a Base Isolated Benchmark Prob-

lem to compare the control technologies and strategies developed for base isolated systems (Narasimhan 

 

et

al

 

. 2003, 2004a). The benchmark building is an eight story building that rests on a rigid concrete base. The

base is isolated from the ground by linear and nonlinear isolation elements. The nonlinear elements are

modelled with hysteretic bilinear or Bouc-Wen models and can sustain biaxial interaction. The benchmark

structure permits testing of not only passive base isolation systems, but also hybrid control strategies, and

includes many practical issues likely to occur in real-life problems. Sample control strategies are also pre-

sented to demonstrate the challenges and facets in the hybrid control design (Erkus and Johnson 2003;

Narasimhan 

 

et al

 

. 2004b). 
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An important difficulty in the design of an hybrid control system for the base isolated benchmark struc-

ture is the nonlinear behavior of the isolation members. In the literature, there is no well-defined analytical

method developed particularly for a system with various types of nonlinearities. On the other hand, linear

control strategies are well-known and frequently applied. Therefore, a sample linear controller design that

takes into account the nonlinear behavior of the structure will be helpful for the benchmark participants to

understand the possible challenges that may appear in the design of such systems.

One approach to utilize a linear control theory for the nonlinear structure is to use an equivalent linear

model (ELM) of the nonlinear structure. The selection of an ELM is not a trivial task. A “good” ELM

should behave “similar” to the nonlinear structure when both are controlled. Therefore, the response char-

acteristics of the controlled nonlinear structure should be known 

 

a priori

 

 to be compared with the con-

trolled ELM response. To find the response of the controlled nonlinear structure, numerical simulations

should be carried out. However, the controller that will be used in the simulations can only be designed by

a linear control theory if an ELM is available. Therefore, to design an ELM, a controller is required, and to

design a controller an ELM is required. This creates a circular dependency problem in the design process,

which can only be solved with an iterative procedure (Fig. 1). 

In this paper, an iterative method is presented to design a linear controller and an accompanying ELM

for the base isolated benchmark structure with nonlinear isolation elements. A linear quadratic Gaussian

Linear Controller 
for the 

Nonlinear Structure

requires a linear 
model of the structure

Equivalent Linear 
Model of the 

Nonlinear Structure

requires response characteristics 
of the nonlinear structure 
with the linear controller

Simulation of the 
Nonlinear System with 
the Linear Controller

requires the 
linear controller

CIRCULAR 
INTERDEPENDENCY

 FIG. 1 Circular interdependency in the linear control design of a nonlinear structure
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(LQG) controller is used to command twelve fully-active controllers, which are placed at the corner bear-

ing locations and the center of mass of the base. The original structure model is modified using a Kanai-

Tajimi filter to shape the excitation. The isolation layer consists of 31 rubber bearings and 61 lead-rubber

bearings (LRBs). The rubber bearings are modeled with linear stiffness and linear damping. In the nonlin-

ear building, the LRBs are modelled with bilinear stiffness and linear damping. The bilinear stiffness of the

LRBs is further modeled as a linear stiffness and an elastic-perfectly-plastic stiffness where the linear

behavior corresponds to the rubber and the elastic-perfectly-plastic behavior corresponds to the lead. The

ELM is assumed to have linear isolation elements, and the linear stiffness is found using an iterative proce-

dure. The stiffness is selected such that the root-mean-square (RMS) nonlinear element forces in the con-

trolled nonlinear structure is equivalent to the RMS value of the same forces in the controlled ELM. After

designing a controller for the final ELM, the responses of the controlled ELM and nonlinear structure are

compared. Also tabulated are the performance indices defined in the benchmark problem definition paper.

The controller and the ELM given herein are not intended to be competitive designs; instead, together with

the M

 

ATLAB

 

 routines to perform the iterative designs they aid the participants of the benchmark problem in

development of their own control strategies.

 

A REVIEW OF THE BENCHMARK STRUCTURE

 

In this section, a brief review of the benchmark structure and its mathematical model are given. The

reader is referred to the problem definition paper (Narasimhan 

 

et al

 

. 2004a) for further details.

The benchmark structure is an eight-story frame building with steel-braces. Stories one to six have an

L-shaped plan while the higher floors have a rectangular plan. The superstructure rests on a rigid concrete

base, which is isolated from the ground by an isolation layer, and consists of linear beam, column and

bracing elements and rigid slabs (Fig. 2). Below the base, the isolation layer consists of a variety of 92 iso-

lation bearings. In the nominal benchmark model, 31 of the bearings are linear elastomeric bearings and

the remaining 61 are sliding friction bearings. Benchmark participants are allowed to modify the properties

of the isolation bearings, as well as add passive, active or semiactive devices between the ground and the

base.

The mathematical model of the benchmark structure is complicated and cannot be used directly for

control design. Therefore, the model is reviewed and developed here in a manner that is somewhat more

amenable for control design. The isolated building is modeled in two parts: (1) the superstructure, which
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consists of the eight-floor structure above the base; and (2) the base, isolation bearings and any additional

control devices.

The superstructure is linear and the slabs are assumed to be rigid. The response of each story is charac-

terized by three degrees-of-freedom (DOFs) — two horizontal DOFs and one rotational DOF — located at

the center of mass of the corresponding floor. Thus, the superstructure finite element model is condensed to

a 24 DOF model. The superstructure equation of motion can be written as

. (1)

In this equation,  is the  displacement vector of the superstruc-

ture where ,  and  are the displacements in the horizontal  and –directions and the rotation of

the mass-center of the  floor with respect to the base, respectively; ,  and  are the mass, pro-

portional damping and stiffness matrices of the superstructure, respectively;  is the  absolute

acceleration of the base (acceleration in the  and –directions and the rotational acceleration), and  is

the influence coefficient matrix. Let  be the mass-normalized eigenmatrix of the superstructure. The

equation of motion can be written in modal form as

 (2)

where  is the modal response vector of the superstructure with respect to the base, and .

Also,

Superstructure

Rigid 
Base

 Bearings

 Ground

 FIG. 2 A representative figure of the benchmark structure
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(3)

where  and  are the modal frequency and damping ratio of the  mode, respectively.

The base is modelled with three degrees-of-freedom located at the center of mass of the base: displace-

ment in the horizontal  and –directions and the rotation about the vertical –direction. There are four

types of external forces exerted on the base: resultant isolator force, resultant controller force, shear force

caused by the superstructure and inertia force induced by the ground acceleration.

The resultant isolator force is found by transferring the bearing forces to the center of mass of the base.

The bearings apply forces only in the  and –directions, possibly with biaxial interaction. Yet, when

these forces are transferred to the center of mass of the base, they may have rotational effects. The bearings

may have linear or nonlinear behavior. The linear bearings are represented with linear stiffness and damp-

ing. The nonlinear bearings, which are displacement and/or velocity-dependent, are represented in a non-

linear isolation force vector. The active and semiactive devices are assumed to apply forces either in the 

or –direction and may cause rotational force effects when they are transferred to the center of mass of the

base. The equation of motion of the base is then given by

(4)

where  is the displacement vector of base mass-center with respect to the ground;

,  and  are the  mass matrix of the base, and the damping and stiffness matrices of the lin-

ear isolators, respectively;  is the  absolute ground acceleration vector (  and –directions); 

and  are the  effective controller and nonlinear isolator force vectors acting on the base-mass-cen-

ter, respectively; and  is the superstructure shear force given by

. (5)

An equation of motion of the whole structure can be obtained by combining equations (2), (4) and (5) as

(6)

where  and the corresponding state-space form is given by
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. (7)

where  is the  controller force vector, and  is the  nonlinear isolation force vector. Here,

 and  are the number of the controllers and the number of the nonlinear bearings, respectively.

The measurement equation used in the numerical simulations is given by

(8)

where  is the noise vector. In this paper, the measurements are absolute accelerations of the center of

mass of each floor and base, absolute ground accelerations and controller displacements relative to the

ground. All of the measurements are in the  and –directions.

In this paper, the isolators are selected as 31 linear elastomeric rubber bearings and 61 lead-rubber bear-

ings. The linear elastomeric bearings are modelled with a linear stiffness and a linear viscous damping.

The lead-rubber bearings are modelled with a bilinear hysteretic stiffness and a linear viscous damping. 

An additional simplification in the modelling of the isolators is carried out as follows (see Fig. 3): Let

the linear stiffness of the elastomeric rubber bearings be . Let the preyield and the postyield stiffness of

the lead-rubber element be  and , respectively. The lead-rubber bearing can be considered as a combi-

nation of two elements: (1) the rubber, which can be modelled as a linear stiffness element with stiffness

, and (2) the lead that can be modelled as an elastic-perfectly-plastic stiffness element with a preyield

stiffness  and a zero postyield stiffness. In this paper, it is assumed that the stiffness of the rubber

in the lead-rubber bearings is equal to the stiffness of the elastomeric rubber bearings, that is .

Finally, this simplification leads to a total of 92 linear stiffness elements with stiffness  and 61 elastic-

perfectly-plastic elements with preyield stiffness  and zero postyield stiffness (Fig. 4). The 92 lin-

ear elements are represented in the matrix  and 61 elastic-perfectly-plastic elements are represented in
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 FIG. 3 Simplification of the bilinear model
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 of equation (4). Similarly, 92 linear viscous damping elements for rubber bearings are represented in

.

CONTROLLER AND ELM DESIGN FOR THE BENCHMARK STRUCTURE

In this section, the equivalent linear model and the LQG controller design are explained. For this pur-

pose a new set of state-space equations is defined for the ELM and used in the LQG control design. Further

details are given in the Appendix.

LQG Control Design

Let the state space representation of the ELM, the measurements and the evaluation output of the ELM

to be minimized, be given as

(9)

where  is the state vector,  is the control force. Here, measured quantities in  correspond

to the measured quantities in . The outputs to be minimized are selected as absolute floor accelerations

and the drifts of the corner isolators; i.e.,  (see the Appendix for the details

of the output equation). 

31 Elastomeric Rubber Bearings

31 Linear Stiffness 
+ 

31 Linear Damping 

61 Lead-Rubber Bearings

Lead Rubber

61 Elastic-perfectly-plastic 
+ 

Zero Damping 

61 Linear Stiffness 
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61 Linear Damping 

 FIG. 4 Modelling of the rubber and LRB bearings
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abs+ +=

zELM Cz
ELMqELM Dz

ELMuELM Ez
ELM ẋ̇g
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As a first step to obtain a system to be used in LQG design, a Kanai-Tajimi filter given by

 (10)

is concatenated to the system (9) as shown in Fig. 5 in both  and –directions to model the ground

motion as

. (11)

to obtain an augmented system given by

(12)

to be used in LQG design. In this equation  and  are band-limited white noise stochastic vector process

modelled as a discrete-time Gaussian pulse process with disturbance covariance given by

. Based on a previous study by Ramallo et al. (2002), the parameters in

(10) are selected as  and  rad/sec, for which the Kanai-Tajimi filter represents the
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 FIG. 5 The augmented plant and the LQG controller
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ground motion of some commonly-used near-and far-source earthquake records. In the design of the LQ

controller and Kalman filter, the augmented system is used as the plant.

The goal of a standard LQG controller is to find a control gain  that satisfies the following optimiza-

tion problem:

(13)

where ,  and  are weighting matrices, and  is the Kalman estimate of the

states. The weighting matrices are selected as

(14)

where

(15)

and

(16)

where  and  are the relative importance of the drifts of the  corner of the base in the  and –

directions, respectively;  and  are the relative importance of the absolute accelerations of the mass-

center of the  floor in the  and –directions, respectively;  is the number of corners considered at

the base; and  and  are the frequencies of the dominant modes in the  and –directions, respec-

tively. The frequencies are included in the weights to normalize the acceleration weights to be compatible

with the displacement weights in units and of similar magnitude. This set of parameters reduces the control

design problem to a choice of the parameters  and , which determine the relative importance of the cor-

ner drifts and absolute floor accelerations. 
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The states are estimated using a Kalman filter, and the measurement equation in (12) is used. Given that

,  and , the Kalman filter finds an estimate of the states 

that minimizes the covariance of the steady state error in the states given by

. (17)

Let the magnitude of the sensor noises be on the order of  percent of the measurements without

noise. Then,

(18)

where state covariance matrix  is the solution of the following Lyapunov equation

. (19)

In this study, the common assumption of uncorrelated excitation and the noise, i.e., , is held. The

schematic representation of the controlled structure is given by Fig. 5.

ELM Design

The iterative method used to obtain an ELM for the base isolated benchmark structure is given in this

section. Although the steps explained below are for the bilinear nonlinearity, they can be modified for other

type of nonlinearities. 

1. An initial guess for the ELM is obtained by replacing the 61 elastic-perfectly-plastic elements with

61 linear stiffness elements, where the linear stiffness are set to the preyield stiffness of the elastic-

perfectly-plastic elements. Therefore, the lead plugs in the ELM are modelled with linear stiffness

. This gives a zero  vector in the equations (7) and (8). Here, the superscript  in

 represents the iteration number. 

2. An LQG controller is designed for the ELM obtained in the previous step as explained in the LQG

design section.

3. Numerical simulations are carried out for both the controlled nonlinear model and the controlled

ELM using an historical earthquake ground acceleration. Then, the following ratio is obtained:
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where  and  are the resultant lead-plug forces acting on the mass-center of the base

obtained from simulations of the controlled nonlinear model and controlled ELM, respectively.

Here,  represents the iteration number.

4. The linear stiffness of the lead plugs in the ELM are updated as 

(21)

and a new ELM is obtained.

5. Steps 2–4 are repeated until convergence, and a  is obtained.

It may be useful to investigate the variation of  with  to check the convergence of the iterative

method explained above. This can be done by simply plotting  for several normalized  values given

by

. (22)

It should be noted that if the method converges,  goes to  and .

It should also be noted that while the numerical simulations carried out for the ELM design in the next

section do not include any noise in the measurements, typical noise levels do not change the results signif-

icantly.

A NUMERICAL EXAMPLE

In this section, a controller and an ELM are designed using the LQG controller and the iterative proce-

dure explained above. Then, the response of the controlled ELM is compared with the controlled nonlinear

structure. Finally, the performance indices defined in the benchmark definition paper are presented for the

ELM design.

The stiffness and damping values for the isolators are given in the benchmark problem definition paper

and are as follows: the preyield and postyield stiffness of the lead-rubber bearings are given as 6466.100

kN/m and 919.422 kN/m, respectively. The stiffness of the elastomeric rubber bearings are given as

919.422 kN/m. The damping for both of the elements are taken as 101.439 kN·s/m. Therefore, in the anal-

ysis and the design stage, 92 linear rubber elements with a stiffness of 919.422 kN/m and a damping of

101.439 kN·s/m, and 61 lead-plugs with a preyield stiffness of 5546.678 kN/m and zero postyield stiffness
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are used. The energy dissipation by the lead plugs in the nonlinear model is represented in the ELM by an

assumed linear damping of 207 kN.s/m. This value is obtained based on some test simulations.

In this paper, the controllers are assumed to be fully active. They are placed at the corners and center of

mass of the base as shown in Fig. 6. At each location, there are two controllers — one in the  and the

other in the –direction. The iterative procedure is carried out for seven historical ground motion records

until  is satisfied. The same controller is used in the step 2 in every iteration. After some

parametric studies, the control parameters are selected as ,  and

m2/N2 for equal weights on displacements and accelerations i.e. , ,

 and . In the Kalman filter design  is used. The results of the iterations

with this controller are given in Table 1. Further, seven set of numerical simulations are carried out to

investigate the variation of  for various  to get a better insight into the convergence properties of the

iterative properties. For illustration purposes, results of four simulations are shown (Fig. 7); those for the

other three earthquakes are similar. 

As shown in Fig. 7, one can easily judge that the iterative procedure converges for proper and consistent

choices of controller parameters. For example, consider the plot for the Newhall earthquake. Since the first

iteration starts with , and it gives . In the second step  is used, which gives

. Similarly, one can easily show that for both  and , the method converges to

(0, 0)

(12.53, -47.79)(-17.25, -47.79)

(-17.25, 30.69)

(32.83, -11.16)

(32.83, 30.69)

x

y

 FIG. 6 Locations of the controllers. At each point there are two controllers.

x

y
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r 1 10 12–×= αx b,
j 1= αy b,

j 1=

βx b,
j 1= βy b,

j 1= ξ 1 10 2–×=

γ k̃lead

k̃lead
1

1= γ 1 0.3≈ k̃lead
2

0.30≈

γ 2 0.8≈ γ 1< γ 1>
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. This observation is valid for other earthquake simulations due to the monotonically decreas-

ing function, , as shown in Fig. 7.

Considering the results of both iterative and parametric study, the ELM is obtained by taking

, which is the average of the normalized stiffness obtained for the seven earthquake data. 

TABLE 1: Results of the final iteration.

Earthquake Iterations (kN/m)

Newhall   7 0.225 1250.297

Sylmar 10 0.107   595.733

El Centro   7 0.409 2268.341

Rinaldi 12 0.098   545.731

Kobe   8 0.204 1129.667

Jiji 15 0.051   280.826

Erzincan   8 0.134   743.401

Final   - 0.175   973.428

k̃lead klead

 FIG. 7 Relation between normalized stiffness and γγγγ
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The controlled nonlinear model and the ELM are simulated for seven earthquake ground acceleration

defined in the benchmark problem. The purpose here is to compare the responses to verify that the con-

trolled ELM responses are indeed approximately replicating those of the original controlled nonlinear

structure. For each earthquake, two ELMs are studied — one with lead stiffness optimal for the particular

earthquake (e.g.,  for El Centro) and one with lead stiffness optimal using the average lead

stiffness ( ). Figures 8, 9 and 10 show representative comparisons for three particular earth-

quakes — El Centro, Kobe and Jiji. For each of the earthquakes, the displacement of the mass-center of the

base of both ELM and nonlinear model in the –direction and the hysteretic behavior, and the absolute

acceleration of the mass-center of base and  floor are shown.

The ELMs are able to efficiently represent the nonlinear behavior of the isolated structure when the

earthquake-specific  are used. While the lead force peaks of the ELMs are somewhat larger, they are

approximated fairly well for most of the duration of the earthquake. Further, the base drifts and the super-

structure absolute accelerations of the ELM are quite similar to those of the nonlinear model. For the final

ELM design, the isolation-layer stiffness is an average of the seven earthquake-specific ELMs. Conse-

quently, the final stiffness is smaller than the optimal for smaller earthquakes, but larger than optimal for

the strong records. This trade-off is expected in this type of linearization problem when excitation charac-

teristics varies significantly. Nevertheless, the final design is a good balance in designing for the more fre-

quent moderate earthquakes as well as the more severe strong ground motions.

The ELMs and the controller parameters are investigated by obtaining the performance indices defined

in the benchmark problem paper. As in the ELM-nonlinear structure comparison plots, two types of ELM

are investigated: earthquake specific ELMs and the final ELM. In addition to the nine predefined perfor-

mance indices, two additional indices are computed:  is the peak control force normalized by the super-

structure weight. The peak control force is the maximum of the resultant control forces in the  and –

directions. The superstructure weight is simply the summation of the weights of all floors including the

base.  is the peak interstory drift of the controlled superstructure normalized by that of the uncontrolled

superstructure. Peak interstory drift is the maximum of the maximum floor drifts; maximum floor drifts are

the maximum of the drifts of the center of mass in the  and –directions. The results are shown in Table

2. The performance indices show that the sample controller behaves satisfactorily for several earthquake

ground acceleration data.

k̃lead 0.410=

k̃lead 0.178=

x

8th

k̃lead

J10

x y

J11

x y
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It should be noted that the controller and the ELM presented in this paper are not intended to be com-

petitive designs. Since the efficiencies of the ELM and controller designs are highly related, participants,

who may wish to use the ELM given herein for their own control strategies, are strongly recommended to

understand the underlying theory for better results or, possibly, better ELM designs.

Some of the MATLAB code used in this paper will be distributed through Internet. See the Appendix for

the details.

CONCLUSIONS

In this paper, an iterative method is presented for a linear controller design of the base isolation bench-

mark structure with bilinear isolation. It is shown that the problem, in fact, includes two interdependent

design problems — ELM and LQG designs — and can only be solved by iterative methods. The results

show that the proposed iterative method converges for seven earthquake records. Moreover, the final con-

trolled ELM represents the controlled nonlinear benchmark structure efficiently, and the final LQG con-

troller improves the overall system performance. However, the participants of the base isolation

benchmark problem are strongly encouraged to develop their own controller-specific equivalent linear

models instead of applying the one that is given in this paper.
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APPENDIX I. DETAILS OF THE EQUATIONS

In this study, three sets of state-space equations are used:

• Equations for the nonlinear system: These equations include nonlinear force elements. Specifically,

nonlinear elements have bilinear stiffness and linear damping. In the equations below, linear damping are

not included in the nonlinear force term, rather in the damping matrix. These equations are used only for

the simulation of the nonlinear system.
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• Equations for an ELM: These do not include nonlinear force elements. Since the bilinear elements

are represented by linear stiffness and damping in the ELM, the stiffness matrix includes the linear stiff-

ness corresponding to the nonlinear elements in the nonlinear system. These equations are used in the sim-

ulations of the ELM and later in the design of the LQG controller.

• Equations for the augmented system: These equations represent the ELM with the Kanai-Tajimi fil-

ter attached. They are used in the LQ and Kalman filter design only.

As one may easily note, all three set of equations defined above are very similar. Therefore in this sec-

tion, only the details of the first set of equations are given. In the evaluation equation, only the corner drifts

and absolute floor accelerations are considered as examples for the outputs. The equations for the measure-

ments and other type of outputs are straightforward to derive.

Consider the nonlinear benchmark structure. The state space matrices in equation (7) are given as

(A.1)

where

. (A.2)

Here the superstructure mass matrix is , and base mass

matrix is . The damping and stiffness matrices of the substructure are given by

(A.3)

where  and  are the  damping and stiffness matrices of the  bearing. In the benchmark

problem, the bearings have only axial force components. Therefore the third column and row of each 

and of each  are zero. Also note that, although the vector  in equation (7) is a  vector, its rota-

tional components are zero. The other matrices are given as

A 0 I

M 1–– K M 1– C–
,= B

0

M 1– S1R2
c

,= E
0

M 1– S2

,= F
0

M 1– S3R2
is
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M
I ΦΦΦΦs

TMsR1

R1
TMsΦΦΦΦs R1

TMsR1 Mb+
,= K K̃s 0

0 Kb

,= C C̃s 0

0 Cb

=

Ms diag mx
8   my

8   mθ
8 … mx

1   my
1   mθ

1[ ]=

Mb diag mx
b   my

b   mθ
b[ ]=

Cb R2
isCis R2

is( )T,= Kb R2
isKis R2

is( )T,=

Cis

C1
is

...

Cnb

is

,= Kis

K1
is
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Knb
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=

Ci
is Ki

is 3 3× ith

Ci
is

Ki
is f 3nb 1×
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(A.4)

where  and  are the coordinates of the  controller and bearing, respectively, relative to

the center of mass of the base.

Consider evaluation output equation (8). The outputs considered are the corner isolator drifts and abso-

lute floor accelerations, . Here, the corner isolator drifts are formed as follows:

(A.5)

where  and  are the drifts of the  corner of the  floor in the  and –directions, respectively.

The absolute acceleration vector is .

The state-space equation matrices for this set of outputs are given by

(A.6)

where

S1 S3
024 3×

I3 3×

= = S2
ΦΦΦΦs

TMsR1
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TMsR1 Mb+

R3–=
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I3 3×
...

I3 3× 24 3×
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R2

c r1
c  … rnc

c[ ]=

R2
is r1

is … rnb

is[ ]=
R3

1 0

0 1

0 0

=

ri
c

1   0   Y i
c–[ ]T    controller is in the, x direction–

1   0   Xi
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⎨
⎧

= ri
is

1 0 0

0 1 0

Y i
is– Xi

is 1

=

Xi
c Y i

c,( ) Xi
is Y i

is,( ) ith

z xcoriso( )T   ẋ̇abs( )T[ ]T=

xcoriso dXb[ ],= dXi

dxi
1

dxi
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...

dxi
ncr
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j dxi

j

dyi
j
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dxi
j dyi

j jth ith x y

ẋ̇abs ẋ̇b
abs   ẏ̇b

abs   ẋ̇1
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(A.7)

and

(A.8)

where  are the coordinates of the  corner of the  floor in the  and –directions, respec-

tively. Here, it is assumed that number of corners for all floors are same and equal to . If they are not

equal,  should be modified appropriately.

APPENDIX II. MATLAB FILES

MATLAB files for this paper are available at www.usc.edu/civil_eng/johnsone/baseisobench/. These

files are coded in structured-script form. This is not only due to the general structure of the iterative

method but also because of the complexity of the original benchmark problem. The users are strongly rec-

ommended to understand the code clearly before modifying it. The authors will readily appreciate sugges-

tions and bug warnings sent to JohnsonE@usc.edu. These files are subject to update based on the user

responses.
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